A Novel Approach for Measuring Electrical Impedance Tomography for Local Tissue with Artificial Intelligent Algorithm

نویسندگان

  • A. S. Pandya
  • A. Arimoto
  • Ankur Agarwal
  • Y. Kinouchi
چکیده

This paper proposes a novel approach for measuring Electrical Impedance Tomography (EIT) of a living tissue in a human body. EIT is a non-invasive technique to measure two or three-dimensional impedance for medical diagnosis involving several diseases. To measure the impedance value electrodes are connected to the skin of the patient and an image of the conductivity or permittivity of living tissue is deduced from surface electrodes. The determination of local impedance parameters can be carried out using an equivalent circuit model. However, the estimation of inner tissue impedance distribution using impedance measurements on a global tissue from various directions is an inverse problem. Hence it is necessary to solve the inverse problem of calculating mathematical values for current and potential from conducting surfaces. This paper proposes a novel algorithm that can be successfully used for estimating parameters. The proposed novel hybrid model is a combination of an artificial intelligence based gradient free optimization technique and numerical integration. This ameliorates the achievement of spatial resolution of equivalent circuit model to the closest accuracy. We address the issue of initial parameter estimation and spatial resolution accuracy of an electrode structure by using an arrangement called “divided electrode” for measurement of bio-impedance in a cross section of a local tissue. A. S. Pandya, A. Arimoto, Ankur Agarwal & Y. Kinouchi International Journal of Biometrics and Bioinformatics, (IJBB), Volume (3): Issue (5) 67

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of Electrical Impedance Tomography in Neurology

Introduction: Electrical impedance tomography (EIT) is a non-invasive technique utilized in various medical applications, including brain imaging and other neurological diseases. Recognizing the physiological and anatomical characteristics of organs based on their electrical properties is one of the main applications of EIT, as each variety of tissue structure has its own electrical characteris...

متن کامل

Modified Impedance-Based OOS Protection Based on On-Line Thévenin Equivalent Estimation

In this paper, a novel approach based on the Thévenin tracing is presented to modified conventional impedance-based out-of-step (OOS) protection. In conventional approach, the OOS detection is done by measuring positive sequence impedance. However, the measured impedance may be change due to different factors such as capacitor bank switching and reactive power compensators that it can cause the...

متن کامل

Novel Hybrid Fuzzy-Intelligent Water Drops Approach for Optimal Feeder Multi Objective Reconfiguration by Considering Multiple-Distributed Generation

This paper presents a new hybrid method for optimal multi-objective reconfiguration in a distribution feeder in addition to determining the optimal size and location of multiple-Distributed Generation (DG). The purposes of this research are mitigation of losses, improving the voltage profile and equalizing the feeder load balancing in distribution systems. To reduce the search space, the improv...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009